Ta có :
\(abab=1000a+100b+10b+a\)
\(=\left(1000a+a\right)+\left(100b+1b\right)=a\left(1000+1\right)+b\left(100+1\right)\)
\(=a.1001+b.101\)
Ta thấy :
\(a.1001⋮11\)
\(b.101⋮11\)
\(\Rightarrow a.1001+b.101⋮11\)
Vậy \(11\) là ước của số có dạng \(abab\)