Bài 13: Ước và bội

PQ

cứu em vs ạ 

chứng tỏ rằng các số sau là số nguyên tố cùng nhau

n+5 và n+6 

2n+3 và 3n+4

n+3 và 2n+7

3n +4 và 3n+7

2n+5 và 6n+17

mong mn cho em lời giải chi tiết của tất cả các câu ạ!

NT
2 tháng 12 2023 lúc 7:37

a: Gọi d=ƯCLN(n+5;n+6)

=>\(\left\{{}\begin{matrix}n+5⋮d\\n+6⋮d\end{matrix}\right.\)

=>\(n+5-n-6⋮d\)

=>\(-1⋮d\)

=>d=1

=>ƯCLN(n+5;n+6)=1

=>n+5 và n+6 là hai số nguyên tố cùng nhau

b; Gọi d=ƯCLN(2n+3;3n+4)

=>\(\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)

=>\(6n+9-6n-8⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(2n+3;3n+4)=1

=>2n+3 và 3n+4 là hai số nguyên tố cùng nhau

c: Gọi d=ƯCLN(n+3;2n+7)

=>\(\left\{{}\begin{matrix}n+3⋮d\\2n+7⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2n+6⋮d\\2n+7⋮d\end{matrix}\right.\)

=>\(2n+6-2n-7⋮d\)

=>\(-1⋮d\)

=>d=1

=>ƯCLN(n+3;2n+7)=1

=>n+3 và 2n+7 là hai số nguyên tố cùng nhau

d: Gọi d=ƯCLN(3n+4;3n+7)

=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

=>\(3n+4-3n-7⋮d\)

=>\(-3⋮d\)

mà 3n+4 không chia hết cho 3

nên d=1

=>ƯCLN(3n+4;3n+7)=1

=>3n+4 và 3n+7 là hai số nguyên tố cùng nhau

e: Gọi d=ƯCLN(2n+5;6n+17)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\6n+17⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+15⋮d\\6n+17⋮d\end{matrix}\right.\)

=>\(6n+15-6n-17⋮d\)

=>\(-2⋮d\)

mà 2n+5 lẻ

nên d=1

=>ƯCLN(2n+5;6n+17)=1

=>2n+5 và 6n+17 là hai số nguyên tố cùng nhau

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PH
Xem chi tiết
L3
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
LN
Xem chi tiết
TM
Xem chi tiết