a, Chứng minh rằng với mọi giá trị thực của x ta luôn có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\) ≥5
b, Giải phương trình \(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=3-4x-2x^2\)
Tìm giá trị nhỏ nhất của biểu thức
A=\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9}\)
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Đề 1:2012-2013
Bài 2: Cho hàm số y = ( m- 2)x +1 (Với m $\neq$ 2_)
a) Vẽ đồ thị của hàm số đã cho khi m = 4
b) Với điều kiện nào của m thì hàm số đã cho đồng biến
Bài 3: Cho biểu thức: P= \(\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\) (Với x ≥ 0; x ≠ 25)
a) Rút gọn biểu thức P
b) Tính giá trị của biểu thức P tại x = 9
c) Tìm x để P < \(\frac{1}{3}\)
Bài 5: Với x> 0, tìm giá trị nhỏ nhất của biểu thức :
A = \(4x^2-3x+\frac{1}{4x}+2012\)
1, Tìm giá trị lớn nhất của biểu thức : \(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
2, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn : \(2x^2+y^2+4x=4+2xy\)
3, Cho x,y,z >0 . Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{8\sqrt{x}+8}{x+2\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}}\right):\left(\dfrac{x+\sqrt{x}+3}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)
a. rút gọn P
b. chứng minh rằng với mọi giá trị x ta luôn có P\(\le1\)
1/Rút gọn và tính giá trị của biểu thức:
A=\(\sqrt{a-3-4\sqrt{a-1}}+\sqrt{a+8+6\sqrt{a-1}}\) tại a=3
B=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) tại x=7
C=\(\sqrt{2}-\sqrt{x+2\sqrt{2x-4}}\) tại x=6
D=\(\sqrt{x+\sqrt{x^2-4}}-\sqrt{x-\sqrt{x^2-4}}\) tại x=11
E=\(\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}}\) tại x=9
F\(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}\) tại a=3
G=\(\sqrt{15a^2}-8\sqrt{15}a+16\) tại a=\(\sqrt{\frac{5}{3}}+\sqrt{\frac{3}{5}}\)
H=\(\sqrt{10a^2-4a\sqrt{10}+4}\) tại a=\(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
2/Cho Q=\(\frac{6-a-\sqrt{a}}{\sqrt{a}-3}\)với a≥0
a) Rút gọn
b) Tìm giá trị của a để Q có GTLN
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
a) Rút gọn biểu thức sau A=\(\sqrt{3+2\sqrt{2}}-\frac{1}{1+\sqrt{2}}\)
b)Chứng minh rằng:\(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{3}{\sqrt{x}-3}\right).\frac{\sqrt{x}+3}{x+9}=\frac{1}{\sqrt{x}-3}\)với x≥0 và x ≠ 9