Tam giác đồng dạng

H24

Chứng minh tứ giác ABCD là hình thang nếu biết:

a,AB=5,BD=10,DC=20 và góc DAB= góc DBC = 90 độ

b,AB=6,BC=16,CD=24,DA=8,BD=12

AH
17 tháng 3 2021 lúc 19:01

Lời giải:

a) Áp dụng định lý Pitago có:

$AD=\sqrt{BD^2-AB^2}=5\sqrt{3}$

$BC=\sqrt{CD^2-BD^2}=\sqrt{20^2-10^2}=10\sqrt{3}$

Xét tam giác $BAD$ và $DBC$ có:

$\widehat{A}=\widehat{B}=90^0$

$\frac{AB}{AD}=\frac{BD}{BC}$ (bạn tự thay giá trị vô)

$\Rightarrow \triangle BAD\sim \triangle DBC$ (c.g.c)

$\Rightarrow \widehat{ABD}=\widehat{BDC}$. Hai góc này ở vị trí so le trong nên $AB\parallel CD$ 

$\Rightarrow $ABCD$ là hình thang.

b) Từ độ dài các cạnh ta có:

Xét tam giác $ABD$ và $BDC$ có:

$\frac{AB}{BD}=\frac{BD}{DC}=\frac{1}{2}$

$\frac{AB}{AD}=\frac{BD}{BC}=\frac{3}{4}$ 

$\frac{BD}{AD}=\frac{DC}{BC}=\frac{3}{2}$

$\Rightarrow \triangle ABD\sim \triangle BDC$ (c.c.c)

$\Rightarrow \widehat{ABD}=\widehat{BDC}$.

Hai góc này ở vị trí so le trong nên $AB\parallel CD$ nên $ABCD$ là hình thang.

 

Bình luận (0)
AH
17 tháng 3 2021 lúc 19:03

Hình vẽ:
undefined

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
PN
Xem chi tiết
CN
Xem chi tiết
BR
Xem chi tiết
LN
Xem chi tiết