x2 > 2( x - 1 )
<=> x2 - 2x + 2 > 0
<=> ( x2 - 2x + 1 ) + 1 > 0
<=> ( x - 1 )2 + 1 > 0 ( luôn đúng ∀ x ∈ R )
Vậy bđt ban đầu được chứng minh
x2 > 2( x - 1 )
<=> x2 - 2x + 2 > 0
<=> ( x2 - 2x + 1 ) + 1 > 0
<=> ( x - 1 )2 + 1 > 0 ( luôn đúng ∀ x ∈ R )
Vậy bđt ban đầu được chứng minh
a) chứng minh rằng a2 + ab + b2 >= 0 với mọi số thực a , b ; b) chứng minh rằng với 2 số thực a , b tùy ý , ta có a4 + b4 >= a3b + ab3
1.chứng minh rằng:
\(x^2+3+\frac{1}{x^2+3}\ge\frac{10}{3},\)với mọi x
Cho 2 số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\). Chứng minh rằng: \(\sqrt{x}+\sqrt{y}\ge4\)
Cho phường trình x^2-mx +2(m-2)=0
a)giải phương trình với m=1
b)chứng minh rằng phương trình luôn có nghiệm với mọi m
c) tìm m để phương trình có 2 nghiệm x1 , x2 thỏa mãn điều kiện 2x1+3x2=5
Cho pt x^2-2(m+2)x+m+1=0
a) giải pt khi m=2
b) chứng minh pt luôn có 2 nghiệm phân biệt với mọi m
c) gọi x1 , x2 là hai nghiệm của pt . tìm giá trị của m để x1(1-2x2)+x2(1-2x1)=m^2
Với mọi x, y, z > 0 và ΔABC bất, chứng minh rằng : \(\dfrac{cosA}{x}+\dfrac{cosB}{y}+\dfrac{cosC}{z}\) ≤ \(\dfrac{x^2+y^2+z^2}{2xyz}\)
1) Xét dấu của biểu thức \(f\left(x\right)=\frac{\left(x-1\right)^5\left(2x+5\right)^{2014}}{x^9\left(-x+3\right)^{2015}}\)
2) Chứng minh rằng phương trình \(\left(m-1\right)x^2+\left(3m-2\right)x+3-2m=0\) luôn có nghiệm với mọi giá trị thực của tham số m
3) Xác định tham số m để hàm số \(y=\sqrt{\frac{-2016x^4-1}{\left(m+1\right)x^2+2\left(m+1\right)x-m-3}}\) có tập xác định D = R
Chứng minh rằng nếu x, y là các số thực dương thì : \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{1+xy}\)
chứng minh rằng với mọi số thực a . b . c ta có : ( a + b + c )2 <= 3( a2 + b2 + c2 )