Violympic toán 9

HA

Chứng minh rằng với mọi số x,y ta có

x4+y4≥ x3y+xy3

SA
15 tháng 11 2018 lúc 22:48

bđt <=> x4 + y4 - x3y - xy3 ≥ 0

<=> x(x3 - y3) - y(x3- y3) ≥ 0

<=> x(x - y)(x2 + xy + y2) - y(x - y)(x2 + xy + y2) ≥ 0

<=> (x - y)2(x2 + xy + y2) ≥ 0 (1)

Ta có: (x - y)2 ≥ 0 ∀x, y

x2 + xy + y2 = (x + \(\dfrac{1}{2}\)y)2 + \(\dfrac{3}{4}\)y2 ≥ 0 ∀ x, y

=> (1) luôn đúng

Dấu "=" xảy ra <=> x = y

Bình luận (0)
RT
16 tháng 11 2018 lúc 0:16

theo bđt cauchy schwars ta có:

\(\left\{{}\begin{matrix}x^4+y^4\ge2x^2y^2\\x^4+x^2y^2\ge2x^3y\\y^4+x^2y^2\ge2xy^3\end{matrix}\right.\)

\(\Leftrightarrow2\left(x^4+y^4\right)+2x^2y^2\ge2\left(xy^3+x^3y\right)+2x^2y^2\)

\(\Leftrightarrow x^4+y^4\ge xy^3+x^3y\)

vậy đpcm

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
NA
Xem chi tiết
VD
Xem chi tiết
NT
Xem chi tiết
MA
Xem chi tiết
BB
Xem chi tiết
LD
Xem chi tiết