Phép nhân và phép chia các đa thức

QN

Chứng minh rằng tổng \(A=7^1+7^2+7^3+7^4+....+7^{4k}\); \(k\in N\) chia hết cho 100.

NT
30 tháng 7 2017 lúc 17:56

\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)

\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)

\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)

\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)

=> đpcm

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
QP
Xem chi tiết
DD
Xem chi tiết
NT
Xem chi tiết
CS
Xem chi tiết
NL
Xem chi tiết
HB
Xem chi tiết
LM
Xem chi tiết
HP
Xem chi tiết