Violympic toán 7

LG

Chứng minh rằng nếu : |x| ≥ 3 ; |y| ≥ 3 ; |z| ≥ 3 thì \(A = \dfrac{xy+yz+zx}{xyz} \) có giá trị nhỏ hơn hoặc bằng 1 .

NL
3 tháng 3 2019 lúc 13:55

\(\left\{{}\begin{matrix}\left|x\right|\ge3\\\left|y\right|\ge3\\\left|z\right|\ge3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|\dfrac{1}{x}\right|\le\dfrac{1}{3}\\\left|\dfrac{1}{y}\right|\le\dfrac{1}{3}\\\left|\dfrac{1}{z}\right|\le\dfrac{1}{3}\end{matrix}\right.\)

\(\left|A\right|=\left|\dfrac{xy+yz+xz}{xyz}\right|=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\le\left|\dfrac{1}{x}\right|+\left|\dfrac{1}{y}\right|+\left|\dfrac{1}{z}\right|\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)

\(\Rightarrow A\le\left|A\right|\le1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=3\)

Bình luận (0)

Các câu hỏi tương tự
DC
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
N7
Xem chi tiết
HD
Xem chi tiết