Chương I - Căn bậc hai. Căn bậc ba

TA

chứng minh rằng lập phương của một số nguyên n bất kì (n>1) trừ đi 19 lần số nguyên đó thì luôn chia hết cho 6

MV
6 tháng 1 2018 lúc 18:00

$ n^3 - 19n = n^3 - n - 18n = n(n^2 - 1) - 18n = n(n + 1)(n - 1) - 18n $

$ n(n + 1)(n - 1) $ là tích của 3 số tự nhiên liên tiếp

$ \Rightarrow n(n + 1)(n - 1) \vdots 6 $

và $ 18n \vdots 6 $

$ \Rightarrow n(n + 1)(n - 1) - 18n \vdots 6 $ hay $ n^3 - 19n \vdots 6 $

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
TH
Xem chi tiết
NC
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
VH
Xem chi tiết