Violympic toán 8

NH

Chứng minh rằng không tồn tại số nguyên n thỏa mãn : \(\left(2014^{2014}+1\right)\)chia hết cho n3+2012n

NL
13 tháng 4 2019 lúc 0:31

\(n^3+2012n=n\left(n^2+2012\right)\)

- Nếu \(n=3k\Rightarrow\left(n^3+2012n\right)⋮3\)

- Nếu \(n=3k+1\Rightarrow n^2+2012=9k^2+6k+2013⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\)

- Nếu \(n=3k+2\Rightarrow n^2+2012=9k^2+12k+2016⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\)

\(\Rightarrow\left(n^3+2012n\right)⋮3\) \(\forall n\in Z\) (1)

Mặt khác ta có:

\(2014\equiv1\left(mod3\right)\Rightarrow2014^{2014}\equiv1\left(mod3\right)\)

\(\Rightarrow2014^{2014}+1\equiv2\left(mod3\right)\Rightarrow\left(2014^{2014}+1\right)⋮̸3\) (2)

Từ (1) và (2) suy ra điều phải chứng minh

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
NL
Xem chi tiết
VN
Xem chi tiết
VA
Xem chi tiết
DH
Xem chi tiết
TM
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết