Violympic toán 8

VA

Cho x,y là các số nguyên thỏa mãn \(\left(2x+y\right)^2+\left(x+4y\right)^2\) chia hết cho 3 .chứng minh rằng xy chia hết cho 9

NL
4 tháng 2 2020 lúc 21:16

\(A=\left(2x+y\right)^2+\left(x+4y\right)^2=5x^2+12xy+17y^2=6x^2+12xy+18y^2-\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2⋮3\)

- Nếu \(\left\{{}\begin{matrix}x⋮̸3\\y⋮̸3\end{matrix}\right.\) \(\Rightarrow x^2;y^2\) đều chia 3 dư 1 \(\Rightarrow x^2+y^2\) chia 3 dư 2 trái giả thiết bên trên (loại)

- Nếu ít nhất một trong 2 số chia hết cho 3 \(\Rightarrow\) số còn lại cũng chia hết cho 3

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=3n\end{matrix}\right.\) \(\Rightarrow xy=9kn⋮9\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KH
Xem chi tiết
CP
Xem chi tiết
NH
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết