Bài 2: Cực trị hàm số

MB

Chứng minh rằng hàm số \(f\left(x\right)=x^4+mx^3+mx^2+mx+1\) không thể đồng thời có cực đại và cực tiểu với mọi m thuộc !

LC
25 tháng 3 2016 lúc 10:45

Xét \(f'\left(x\right)=4x^3+3mx^2+2mx+m=0\Leftrightarrow m\left(3x^2+2x+1\right)=-4x^3\)

                 \(\Leftrightarrow\frac{-4x^3}{3x^2+2x+1}\) 

Xét hàm số : \(g\left(x\right)=\frac{-4x^3}{3x^2+2x+1}\) có tập xác định : \(D_g=!\)

\(g'\left(x\right)=\frac{-4x^2\left(3x^2+2x+1\right)}{\left(3x^2+2x+1\right)^2}=\frac{-4x^2\left[2\left(x+1\right)^2+x^2+1\right]}{\left(3x^2+2x+1\right)^2}\le0\) với mọi \(x\in!\)

\(\lim\limits g\left(x\right)_{x\rightarrow\infty}=\lim\limits_{x\rightarrow\infty}\frac{-4x}{3+\frac{2}{x}+\frac{1}{x^2}}=\infty\)

Nghiệm của phương trình \(f'\left(x\right)=0\) cũng là giao điểm của đường thẳng y=m với đồ thị y = g(x)

Lập bảng biến thiên ta có đường thẳng y=m cắt y =g(x) tại đúng 1 điểm 

\(\Rightarrow f'\left(x\right)=0\)

 có đúng 1 nghiệm

Vậy hàm số y=f(x) không thể đồng thời có cực đại và cực tiểu

Bình luận (0)

Các câu hỏi tương tự
QT
Xem chi tiết
SK
Xem chi tiết
NU
Xem chi tiết
AN
Xem chi tiết
ML
Xem chi tiết
AN
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
NB
Xem chi tiết