Ta có : \(1961\equiv1\left(mod7\right)\Rightarrow1961^{1962}\equiv1\left(mod7\right)\)
\(1963\equiv3\left(mod7\right)\Rightarrow1963^{1964}\equiv3^{1964}=9.\left(3^6\right)^{327}\equiv9\left(mod7\right)\)
\(1995\equiv5\left(Mod7\right)\Rightarrow1995^{1996}\equiv5^{1996}=\left(5^6\right)^{332}.5^4\equiv2\left(mod7\right)\)
Ta cộng tất cả lại thì \(S\equiv14\equiv0\left(mod7\right)\)
\(\Rightarrowđpcm\)