Violympic toán 9

KD

Chứng minh:

nếu x\(\ge\)2 thì \(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}\ge2\)

PH
8 tháng 12 2019 lúc 13:33

ta có \(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}\)

\(=\sqrt{\left(\sqrt{x-2}+1\right)^2}+\sqrt{\left(\sqrt{x-2}-1\right)^2}\)

\(=\left|\sqrt{x-2}+1\right|+\left|\sqrt{x-2}-1\right|\)

Vì \(x\ge2\Rightarrow\sqrt{x-2}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2}+1\ge1\\\sqrt{x-2}-1\ge-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|\sqrt{x-2}+1\right|\ge1\\\left|\sqrt{x-2}-1\right|\ge1\end{matrix}\right.\)

\(\Leftrightarrow\left|\sqrt{x-2}+1\right|+\left|\sqrt{x-2}-1\right|\ge2\)

Hay A\(\ge2\) Dấu = xảy ra khi x=2

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
VH
Xem chi tiết
PQ
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
LY
Xem chi tiết
DH
Xem chi tiết
LT
Xem chi tiết