Ôn tập chương III

NX

chứng minh ∀ n ϵ N , n > 1 ta có \(\dfrac{1}{n-1}-\dfrac{1}{n}>\dfrac{1}{n^2}>\dfrac{1}{n}-\dfrac{1}{n+1}\)

NL
25 tháng 7 2021 lúc 14:21

Ta có: \(n\left(n-1\right)=n^2-n< n^2\Rightarrow\dfrac{1}{n\left(n-1\right)}>\dfrac{1}{n^2}\)

\(n\left(n+1\right)=n^2+n>n^2\Rightarrow\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}\)

Từ đó:

\(\dfrac{1}{n-1}-\dfrac{1}{n}=\dfrac{n-\left(n-1\right)}{n\left(n-1\right)}=\dfrac{1}{n\left(n-1\right)}>\dfrac{1}{n^2}\) (1)

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}\) (2)

(1);(2) \(\Rightarrow\dfrac{1}{n-1}-\dfrac{1}{n}>\dfrac{1}{n^2}>\dfrac{1}{n}-\dfrac{1}{n+1}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
NX
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NX
Xem chi tiết
YA
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết