Violympic toán 9

NT

chứng minh đẳng thức: \(\left(\dfrac{\sqrt{a}}{1-\sqrt{a}}+\dfrac{\sqrt{a}}{1+\sqrt{a}}\right):\dfrac{2\sqrt{a}}{a-1}=-1\) (với a>0;a\(\ne\)1)

VT
21 tháng 5 2018 lúc 19:06

\(VT=\left(\dfrac{\sqrt{a}}{1-\sqrt{a}}+\dfrac{\sqrt{a}}{1+\sqrt{a}}\right):\dfrac{2\sqrt{a}}{a-1}\)

\(=\left(\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}\left(\sqrt{a}-1\right)}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}\)

\(=\left(\dfrac{-a-\sqrt{a}+a-\sqrt{a}}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}=\dfrac{-2\sqrt{a}}{a-1}.\dfrac{a-1}{2\sqrt{a}}=-1=VP\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
BB
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
NT
Xem chi tiết
NS
Xem chi tiết