Bài 3: Rút gọn phân thức

H24

Chứng minh đẳng thức:

a, \(\left(\dfrac{3}{2x-y}-\dfrac{2}{2x+y}-\dfrac{1}{2x-5y}\right).\dfrac{4x^2-y^2}{y^2}=\dfrac{-24}{2x-5y}\)

b, \(\dfrac{x^2-x+1}{x^2+x}.\dfrac{x+1}{3x-2}.\dfrac{9x-6}{x^2-x+1}=\dfrac{3}{x}\)

AH
16 tháng 7 2018 lúc 23:21

Lời giải

a)

\(\left(\frac{3}{2x-y}-\frac{2}{2x+y}-\frac{1}{2x-5y}\right).\frac{4x^2-y^2}{y^2}\)

\(=\frac{3(4x^2-y^2)}{(2x-y)y^2}-\frac{2(4x^2-y^2)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)

\(=\frac{3(2x-y)(2x+y)}{(2x-y)y^2}-\frac{2(2x-y)(2x+y)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)

\(=\frac{3(2x+y)-2(2x-y)}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{2x+5y}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{(2x+5y)(2x-5y)-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)

\(=\frac{4x^2-25y^2-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}=\frac{-25}{2x-5y}+\frac{1}{2x-5y}=\frac{-24}{2x-5y}\)

Ta có đpcm.

b) 

\(\frac{x^2-x+1}{x^2+x}.\frac{x+1}{3x-2}.\frac{9x-6}{x^2-x+1}\)

\(=\frac{(x^2-x+1)(x+1).3(3x-2)}{x(x+1)(3x-2)(x^2-x+1)}\)

\(=\frac{3}{x}\) (đpcm)

Bình luận (1)

Các câu hỏi tương tự
TN
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
TP
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết
QN
Xem chi tiết
LN
Xem chi tiết
QT
Xem chi tiết