Violympic toán 9

MM

Chứng minh bất đẳng thức:

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

Ai giúp mình với ( đề chuẩn k sai nha )

AH
1 tháng 10 2017 lúc 16:44

Lời giải:

\(a^2+b^2+c^2+d^2\geq a(b+c+d)\)

\(\Leftrightarrow 4a^2+4b^2+4c^2+4d^2\geq 4a(b+c+d)\)

\(\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+a^2\geq 0\)

BĐT trên luôn đúng nên ta có đpcm.

Dấu bằng xảy ra khi \(0=a=2b=2c=2d\Leftrightarrow a=b=c=d=0\)

Bình luận (0)

Các câu hỏi tương tự
MM
Xem chi tiết
MM
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
AS
Xem chi tiết
TH
Xem chi tiết
TP
Xem chi tiết
PA
Xem chi tiết
NL
Xem chi tiết