Đại số lớp 8

TR

Chứng minh: a5-a chia hết cho 30 với a\(\in Z\)

Chứng minh rằng: x5-x+2 không là số chính phương với mọi x\(\in Z\)

Chứng minh rằng nếu a,b, c là các số hữu tỉ và ab+bc+ac=1 thì (1+a2)(1+b2)(1+c2) bằng bình phương của số hữu tỉ

H24
11 tháng 3 2017 lúc 7:08

\(A=a^5-a=a.\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=B\left(a^2+1\right)\)B là 3 số tự nhiên liên tiếp \(\left\{{}\begin{matrix}B⋮2\\B⋮3\\B⋮6\end{matrix}\right.\) ta cần c/m A chia cho 5

\(A=B\left(n^2+1\right)=B\left[\left(n^2-4\right)+5\right]=B\left(n^2-2^2\right)=B\left(n-2\right)\left(n+2\right)+5B=C+5B\)C là tích 5 số tự nhiên liên tiếp: \(\left\{{}\begin{matrix}C⋮5\\5B⋮5\end{matrix}\right.\)\(\Rightarrow A⋮5\)

\(\left\{{}\begin{matrix}A⋮5\\A⋮6\end{matrix}\right.\)\(\Rightarrow A⋮30\) => dpcm

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
BM
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết
LL
Xem chi tiết
VT
Xem chi tiết
KR
Xem chi tiết
ST
Xem chi tiết
VQ
Xem chi tiết