Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
1 . a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.
b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.
Chứng minh rằng: a2 + b2 ≤ 1 + ab
Câu 3
1. Cho a và b là các số tự nhiên thoả mãn \(2a^2+a=3b^2+b\)
Chứng minh rằng: a-b và 3a+3b+1 là các số chính phương.
2. Tìm các cặp số nguyên dương (x; y) thỏa mãn 6x + 5y + 18 = 2xy
1) Tìm các số nguyên dương n sao cho \(n^4+n^3+1\) là số chính phương
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên
cho M=a^2 + 3a +1 với a là số nguyên dương .Chứng minh mọi ước của M đều là số lẻ
Tìm các số nguyên dương a,b sao cho: \(\frac{a^2+b}{b^2-a}\) và \(\frac{b^2+a}{a^2-b}\)đều là số nguyên
tìm các số nguyên dương a,b sao cho \(\frac{a^2+b}{b^2-a}\) và \(\frac{b^2+a}{a^2-b}\) đều là số nguyên
Chứng minh rằng tồn tại các hằng số a, b, c để phương trình sau có vô số nghiệm:
\(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)
tìm n là số nguyên dương để : \(n^4+n^3+n^2+n+1\) là bình phương của 1 số nguyên dương