Phép nhân và phép chia các đa thức

NP

chứng minh

a. x2-4xy-4y2+3>0 với mọi số thực x và y

b. 2x-2x2-1<0 với mọi số thực x

TH
31 tháng 10 2017 lúc 20:37

a)\(x^2-4xy+4y^2+3\)

\(=\left(x-2y\right)^2+3\)

Do \(\left(x-2y\right)^2\ge0\forall x,y\)

\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)

\(\left(x-2y\right)^2+3>0\forall x,y\)

=> Đpcm

b)\(2x-2x^2-1\)

\(=-x^2-x^2+2x-1\)

\(=-x^2-\left(x-1\right)^2\)

\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)

=> đpcm

Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.

Chúc bạn học tốt!^^

Bình luận (0)
HA
31 tháng 10 2017 lúc 20:29

sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT

Bình luận (0)

Các câu hỏi tương tự
TY
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
VQ
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
PT
Xem chi tiết
BH
Xem chi tiết