Phép nhân và phép chia các đa thức

TN

CMR:

a) 4x^2-6x+9>0 với mọi số thực x
b) x^2+2y^2-2xy+y+1>0 với mọi số thực x,y

H24
29 tháng 10 2018 lúc 21:18

a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)

\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)

\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

\(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)

nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)

b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)

nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
TY
Xem chi tiết
NP
Xem chi tiết
VQ
Xem chi tiết
KJ
Xem chi tiết
DL
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết