Phép nhân và phép chia các đa thức

LK

Chứng minh

a) n4-10n2+9 chia hết cho 382 với mọi số nguyên lẻ n

b) 10n+18n+9 chia hết cho 27 với mọi số tự nhiên n

c) n2+7n+22 không chia hết cho 9 với mọi số nguyên n

d) n2-5n-49 không chia hết cho 169 với mọi số nguyên n

BN
19 tháng 11 2018 lúc 21:21

a) Đề sai, phải là 384 mới đúng

Đặt \(A=n^4-10n^2+9\)

\(A=\left(n^4-n^2\right)-\left(9n^2-9\right)\)

\(A=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^2-9\right)\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì n lẻ nên n = 2k + 1 ( k thuộc Z )

Khi đó A = 2k( 2k + 2)(2k - 2)( 2k + 4)

A = 16k( k + 1)( k - 1)( k + 2)

Ta thấy k - 1; k; k + 1; k + 2 là những số nguyên liên tiếp nên có hai số chẵn liên tiếp và một số chia hết cho 3

=> k( k + 1)( k - 1)( k + 2) chia hết cho 3 và 8

=> k( k + 1)( k - 1)( k + 2) chia hết cho 24 ( vì ƯCLN(3;8)=1)

=> A chia hết cho 16.24 = 384 ( Đpcm )

Bình luận (0)
SA
19 tháng 11 2018 lúc 19:46

Đăng từng câu thôi, không giới hạn số lượng câu hỏi mà :)

b) Ta có: 18n + 9 ⋮ 9; 10n không chia hết cho 9

=> 10n + 18n + 9 không chia hết cho 27

Bình luận (0)
LK
19 tháng 11 2018 lúc 19:54

Cho mk sửa lại câu b là 10n - 18n - 28

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
An
Xem chi tiết
NA
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
CS
Xem chi tiết