n2(n + 1) + 2n(n + 1)
⇔n3 + n2 + 2n2 + 2n
⇔n3 + 3n2 + 2n
⇔(n2 + 3n + 2)n
n2(n + 1) + 2n(n + 1)
⇔n3 + n2 + 2n2 + 2n
⇔n3 + 3n2 + 2n
⇔(n2 + 3n + 2)n
Chứng minh rằngvới mọi số nguyên n thì:
b)(2n –1)3–(2n –1) chia hết cho 8
mn đại lượng giúp misha giải chi tiết bài này nhé^^
cảm ơn mn nhìu^^
Chứng minh \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\) chia hết cho 6 với mọi số nguyên \(n\)
chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi số nguyên n
Chứng minh rằng với mọi số nguyên n thì (6n + 1)(n + 5) - (3n + 5)(2n - 1) chia hết cho 2
chứng minh rằng với mọi số nguyên n thì
(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
chứng minh rằng
a) \(43^2+43\cdot17\) chia hết cho 60
b) \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi \(n\in z\)
c) \(25n\left(n-1\right)-50\left(n-1\right)\) luôn chia hết cho 150 với mọi n là số nguyên
Với mọi số nguyên n, biểu thức nào dưới đây chia hết cho 5.
A. M = 2n (2n - 5) + (2n + 1)(1 - 2n). B. N = n (2n - 3) - 2n (n + 1).
C. P = (n - 1)(3 - 2n) + 2n (n + 5). D. Q = (n - 1)(n + 3) - (n - 3)(n + 1).
Chứng tỏ rằng :
a ) Biểu thức n( 2n - 3 ) - 2n ( n + 1 )luôn chia hết cho 5 với mọi số nguyên n
b ) Biểu thức a2 ( a + 1 ) + 2a ( a + 1 ) chia hết cho 6 với a \(\in\) Z
Chứng minh rằng với mọi giá tyrij nguyên n , ta có
a)\(n^3+3n^2+2n\) chia hết cho 6
b)\(\left(n^2+n-1\right)^2-1\) chia hết cho 24