Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương I - Căn bậc hai. Căn bậc ba

ML

Chp x, y > 0 thỏa mãn x + y = 1. Chứng minh rằng: 3. (3x - 2)2 + \(\frac{8x}{y}\) ≥ 7

MS
10 tháng 7 2019 lúc 23:44

Áp dụng bđt AM-GM\(3\left(3x-2\right)^2+\frac{8x}{y}=3\left(9x^2-12x+4\right)+\frac{8x}{y}\)

\(=27x^2-36x+12+\frac{8x}{y}=27x^2-24x+12y+\frac{8x}{y}\)

\(=\left(24x^2+4y+\frac{16x}{3y}\right)+\left(3x^2+8y+\frac{8x}{3y}\right)-24x\)

\(\ge3\sqrt[3]{24x^2.4y.\frac{16x}{3y}}+\left(3x^2+8y+\frac{8x}{3y}\right)-24x=3x^2+8y+\frac{8x}{3y}\)

\(=\left(3x^2+\frac{y}{2}+\frac{2x}{3y}\right)+\left(\frac{15}{2}y+\frac{2x}{y}\right)\ge3\sqrt[3]{3x^2.\frac{y}{2}.\frac{2x}{3y}}+\left(\frac{15}{2}y+\frac{2x}{y}\right)=3x+\frac{15y}{2}+\frac{2x}{y}\)

\(=3x+\frac{15y}{2}+\frac{2x}{y}+2-2=3x+\frac{15y}{2}+\frac{2}{y}-2\)

\(=\left(3x+3y\right)+\left(\frac{9}{2}y+\frac{2}{y}\right)-2\ge3+2\sqrt{\frac{9y}{2}.\frac{2}{y}}-2=3+6-2=7\)

\("="\Leftrightarrow x=\frac{1}{3};y=\frac{2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
AD
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
DL
Xem chi tiết
HU
Xem chi tiết
PP
Xem chi tiết
NL
Xem chi tiết
PK
Xem chi tiết
MP
Xem chi tiết