Violympic toán 9

MK

Cho:(P):y=\(x^2\) và (d):y=(2m-1)x-m+2

a)Chứng minh (P) cắt (d) tại 2 điểm phân biệt

b)Tìm m để P cắt d tại A\(\left(x_1;y_1\right),B\left(x_2;y_2\right)\) sao cho \(x_1y_1=-x_2y_2\)

AH
25 tháng 2 2019 lúc 17:45

Lời giải:

a) PT hoành độ giao điểm:

\(x^2-[(2m-1)x-m+2]=0\)

\(\Leftrightarrow x^2-(2m-1)x+m-2=0(*)\)

Ta thấy:

\(\Delta=(2m-1)^2-4(m-2)=4m^2-8m+9=4(m-1)^2+5>0, \forall m\in\mathbb{R}\)

Do đó PT hoành độ giao điểm có 2 nghiệm pb, hay 2 ĐTHS cắt nhau tại hai điểm phân biệt.

b)

Gọi 2 hoành độ giao điểm là $x_1,x_2$. Khi đó \((y_1,y_2)=(x_1^2,x_2^2)\)

Để \(x_1y_1=-x_2y_2\)

\(\Leftrightarrow x_1.x_1^2=-x_2.x_2^2\)

\(\Leftrightarrow x_1^3=-x_2^3\Leftrightarrow x_1=-x_2\)

\(\Leftrightarrow x_1+x_2=0\)

\(\Leftrightarrow 2m-1=0\Leftrightarrow m=\frac{1}{2}\) (áp dụng định lý Vi-et cho pt $(*)$)

Vậy $m=\frac{1}{2}$

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
KZ
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
KC
Xem chi tiết
KT
Xem chi tiết
DH
Xem chi tiết