Violympic toán 8

SD

cho x,y,z\(\ge\)0. chứng minh (x+y)(y+z)(x+z)\(\ge\)8xyz

PL
31 tháng 3 2018 lúc 20:21

Áp dụng BĐT Cô - si : a + b ≥ 2\(\sqrt{ab}\)

=> x + y ≥ \(2\sqrt{xy}\) ( 1 )

y + z ≥ \(2\sqrt{yz}\) ( 2 )

x + z ≥ 2\(\sqrt{xz}\) ( 3 )

Nhân tưng vế của ( 1 , 2 , 3) , ta được :

( x + y )( y + z)( z + x ) ≥ \(2\sqrt{xy}\) . \(2\sqrt{yz}\) .2 \(\sqrt{xz}\)

<=> ( x + y )( y + z)( z + x ) ≥ 8 xyz

Bình luận (0)
KK
31 tháng 3 2018 lúc 15:30

ta có (x+y)2 ≥ 4xy

(y+z)2≥ 4yz

(x+z)2≥4xz

nhân từng vế của bđt trên ta được

(x+y)2 (y+z)2 (x+z)2 ≥ 64 x2y2z2

=> [(x+y)(y+z)(x+z)]2≥ (8xyz)2

=>(x+y)(y+z)(x+z)≥ 8xyz(đpcm)

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
AR
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NU
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết