x+y+z =6
(x+1)+(y+2)+(z+3)=0
\(\left\{{}\begin{matrix}a+b+c=12\\E_{\left(a;b;c\right)}=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{12^2}{3}=48\end{matrix}\right.\)
đẳng thức khi
a=b=c =4 ;(x;y;z) =(3;2;1)
x+y+z =6
(x+1)+(y+2)+(z+3)=0
\(\left\{{}\begin{matrix}a+b+c=12\\E_{\left(a;b;c\right)}=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{12^2}{3}=48\end{matrix}\right.\)
đẳng thức khi
a=b=c =4 ;(x;y;z) =(3;2;1)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
tìm giá trị nhỏ nhất của biểu thức
\(A=\dfrac{\left(x-1\right)^2}{z}+\dfrac{\left(y-1\right)^2}{x}+\dfrac{\left(z-1\right)^2}{y}\)
cho x,y,z là các số dương thỏa mãn x3+y3+z3=8
tìm giá trị nhỏ nhất của biểu thức H=\(\frac{x^2+y^2}{xy\left(x+y\right)^3}+\frac{y^2+z^2}{yz\left(y+z\right)^3}+\frac{z^2+x^2}{zx\left(z+x\right)^3}\)
Cho x,y,z >0 thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\).Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{x\left(x^2+y^2\right)}\)
Cho các số thực ko âm x,y,z thoả mãn \(x^2+y^2+z^2\le3y\)
Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
Cho các số thực dương x, y, z thoả mãn \(xyz=1\). Tìm giá trị nhỏ nhất của biểu thức: \(E=\dfrac{1}{x^3\left(y+z\right)}+\dfrac{1}{y^3\left(z+x\right)}+\dfrac{1}{z^3\left(x+y\right)}\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Cho ba số thực x, y, z. Tìm giá trị lớn nhất của biểu thức:
S=\(\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+xz\right)}\)