Violympic toán 9

LN

Cho x,y,z là các số thực thỏa mãn:xy+yz+3zx=1.Tìm GTNN P=\(x^2+y^2+z^2\)

NL
20 tháng 6 2019 lúc 22:56

Kiểu BĐT bất đối xứng kết quả cực xấu, mình nêu hướng chung, bạn tự giải, chứ kết quả toàn căn thức nhìn đã mất cảm tình rồi:

Ở ngoài nháp, phân tích như sau:

Dự đoán điểm rơi \(x=z\)

Ta thiết lập lần lượt các đánh giá:

\(a\left(x^2+z^2\right)\ge2axz\) ; \(x^2+b^2y^2\ge2bxy\); \(z^2+b^2y^2\ge2byz\) (1)

Cộng vế với vế:

\(\left(a+1\right)x^2+2b^2y^2+\left(a+1\right)z^2\ge2bxy+2byz+2axz\)

Để vế trái là \(k.P\) và vế phải là \(n\left(xy+yz+3xz\right)\) thì:

\(\left\{{}\begin{matrix}a+1=2b^2\\\frac{a}{b}=\frac{3}{1}\end{matrix}\right.\) \(\Leftrightarrow2b^2-3b-1=0\Rightarrow b=\frac{3+\sqrt{17}}{4}\Rightarrow a=\frac{9+3\sqrt{17}}{4}\)

Vậy là xong, thay lần lượt a; b vừa tìm được vào (1) và làm vào giấy:

\(\frac{9+3\sqrt{17}}{2}\left(x^2+z^2\right)\ge\left(9+3\sqrt{17}\right)xz\)

....

Tương tự và cộng lại sau đó chia vế phải cho \(a+1=...\) là xong

Bình luận (0)