Ôn tập cuối năm phần số học

CV

Cho x,y,z là các số khác 0 và x + y = z khác 0 thoả mãn x = by + cz; y = ax + cz; z = ax + by. Tính giá trị biểu thức A = \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\)

NA
16 tháng 12 2018 lúc 8:10

Ta có:\(\left\{{}\begin{matrix}x=by+cz\\y=ax+cz\\z=ax+by\end{matrix}\right.\)

\(\Leftrightarrow x+y+z=2\left(ax+by+cz\right)\)

Thay \(x=by+cz\) vào biểu thức ta được:

\(x+y+z=2\left(ax+x\right)=2x\left(a+1\right)\)

\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{2x}{2x\left(1+a\right)}=\dfrac{2x}{x+y+z}\)

CMTT và cộng theo vế suy ra A=2

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CM
Xem chi tiết
KT
Xem chi tiết
HP
Xem chi tiết
BS
Xem chi tiết
QS
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết