Violympic toán 9

CL

Cho x,y,z là các số dương thỏa mãn \(\dfrac{1}{x+y}\)+\(\dfrac{1}{y+x}\)+ \(\dfrac{1}{z+x}\)=6.

CMr: \(\dfrac{1}{3x+3y+2z}\)+ \(\dfrac{1}{3x+2y+3z}+\dfrac{1}{2x+3y+3z}\le\dfrac{3}{2}\).

Giúp mình nk ^^

AH
17 tháng 9 2017 lúc 20:56

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)

\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)

\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)

Cộng theo vế:

\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
VD
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LM
Xem chi tiết
EO
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết