§4. Các tập hợp số

TT

Cho x,y,z la ba so thuc duong thoa man

\(xy+yz+zx=3\)

C/m: \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge1\)

NL
26 tháng 9 2019 lúc 17:39

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=9\Rightarrow x+y+z\ge3\)

\(P=\sum\frac{x^2}{\sqrt{x^3+8}}=\sum\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\sum\frac{2x^2}{x^2-x+6}\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2+6-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}-1+1\)

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2+\left(x+y+z\right)-12}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1=\frac{\left(x+y+z-3\right)\left(x+y+z+4\right)}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1\)

Do \(x+y+z-3\ge0\Rightarrow P\ge1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (1)

Các câu hỏi tương tự
DD
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết
JS
Xem chi tiết
T2
Xem chi tiết
BL
Xem chi tiết
PN
Xem chi tiết
PM
Xem chi tiết
NC
Xem chi tiết