Chương I - Căn bậc hai. Căn bậc ba

NQ

Cho x,y,z > 0 , x + y + z <= \(\frac{3}{2}\). C/m : \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}>=\frac{3}{2}\sqrt{17}\)

NL
19 tháng 6 2019 lúc 8:18

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\sqrt{\left(x+y+z\right)^2+\frac{81}{16\left(x+y+z\right)^2}+\frac{1215}{16\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\frac{81\left(x+y+z\right)^2}{16\left(x+y+z\right)^2}}+\frac{1215}{16.\left(\frac{3}{2}\right)^2}}=\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(z=y=z=\frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
NM
Xem chi tiết
PP
Xem chi tiết
AD
Xem chi tiết
NQ
Xem chi tiết
HT
Xem chi tiết
HS
Xem chi tiết
HC
Xem chi tiết
HT
Xem chi tiết