Ôn tập cuối năm phần số học

HN

Cho x,y,z > 0 và x+y+z+xy+yz+zx=6 .C/minh x^2 + y^2+ z^2 > hoặc = 6

NL
30 tháng 3 2019 lúc 16:19

Bạn chép sai đề, đề đúng phải là \(x^2+y^2+z^2\ge3\)

Áp dụng các BĐT quen thuộc:

\(2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

Cộng vế với vế:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
MK
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
QS
Xem chi tiết