Violympic toán 9

PC

cho x,y,z > 0 thỏa mãn \(xy+yz+zx=3\)

Tìm max của \(P=\dfrac{x}{\sqrt{x^2+3}}+\dfrac{y}{\sqrt{y^2+3}}+\dfrac{z}{\sqrt{z^2+3}}\)

AH
24 tháng 5 2018 lúc 0:43

Lời giải:

Thay $3=xy+yz+xz$ vào biểu thức:

\(P=\frac{x}{\sqrt{x^2+xy+yz+xz}}+\frac{y}{\sqrt{y^2+xy+yz+xz}}+\frac{z}{\sqrt{z^2+xy+yz+xz}}\)

hay \(P=\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\)

Áp dụng BĐT Cauchy ta có:

\(\frac{x}{\sqrt{(x+y)(x+z)}}\leq \frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Hoàn toàn tương tự:

\(\frac{y}{\sqrt{(y+z)(y+x)}}\leq \frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)

\(\frac{z}{\sqrt{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{z}{z+y}+\frac{z}{x+z}\right)\)

Cộng theo vế:

\(\Rightarrow P\leq \frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Vậy \(P_{\max}=\frac{3}{2}\). Dấu bằng xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết
BB
Xem chi tiết
BA
Xem chi tiết