Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

Cho x,y,z > 0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017\)

Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

TP
9 tháng 8 2019 lúc 21:04

Xét bất đẳng thức : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Áp dụng ta có :

\(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)

\(\Leftrightarrow\sqrt{2\left(y^2+z^2\right)}\ge y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Tương tự ta có \(\frac{y^2}{x+z}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}};\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Cộng theo vế của 3 bđt ta được :

\(A\ge\Sigma\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2+y^2}\\b=\sqrt{y^2+z^2}\\c=\sqrt{z^2+x^2}\end{matrix}\right.\)

Khi đó :

+) \(a+b+c=2017\)

+) \(a^2+b^2-c^2=x^2+y^2+y^2+z^2-z^2-x^2=2y^2\)

\(\Leftrightarrow\frac{a^2+b^2-c^2}{2}=y^2\)

\(\)+) \(\sqrt{2\left(z^2+x^2\right)}=\sqrt{2}c\)

Do đó ta có \(A\ge\frac{a^2+b^2-c^2}{2\sqrt{2c}}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{a^2+c^2-b^2}{2\sqrt{2}b}\)

\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}\right)\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}+2c-3c\right)\right]\ge\frac{1}{2\sqrt{2}}\left[\Sigma\left(2\left(a+b\right)-3c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)\)

\(=\frac{1}{2\sqrt{2}}\cdot2017=\frac{2017}{2\sqrt{2}}=\frac{2017\sqrt{2}}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=...\)

Bình luận (3)

Các câu hỏi tương tự
H24
Xem chi tiết
LD
Xem chi tiết
NT
Xem chi tiết
KR
Xem chi tiết
TP
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
BM
Xem chi tiết
LN
Xem chi tiết