Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

NA

Cho x, y, z là ba số dương thỏa mãn \(x^2+y^2+z^2=1\)

Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2xyz\)

TH
11 tháng 4 2016 lúc 11:53

Áp dụng bất đăng thức Cauchy : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên \(P\ge\frac{3}{\sqrt[3]{xyz}}+2xyz\). Đẳng thức khi : x=y=z

Đặt \(t=\sqrt[3]{xyz}\)

Cũng theo Cauchy : \(1=x^2+y^2+z^2\ge3\sqrt{x^2y^2z^2}\). Đẳng thức khi x=y=z

Nên ta có 0<t\(\le\frac{\sqrt{3}}{3}\)

Xét hàm số \(f\left(t\right)=\frac{3}{t}+2t^3\) với  0<t\(\le\frac{\sqrt{3}}{3}\)

Tính \(f'\left(t\right)=-\frac{3}{t^2}+6t^2=\frac{3\left(2t^2-1\right)}{t^2}\)

Lập bảng biến thiên của f(t) rồi chỉ ra : \(f\left(t\right)\ge\frac{29\sqrt{3}}{9}\) với mọi t\(\in\left(0;\frac{\sqrt{3}}{3}\right)\)

Từ đó \(P\ge\frac{29\sqrt{3}}{9}\)

Giá trị nhỏ nhất của P là \(\frac{29\sqrt{3}}{9}\) đạt được khi \(x=y=z=\frac{\sqrt{3}}{3}\)

 
Bình luận (0)
LP
10 tháng 12 2017 lúc 21:16

cd đúng ko

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HS
Xem chi tiết
WH
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LD
Xem chi tiết