Violympic toán 8

NH

Cho x+y=1 và xy\(\ne\)0.CMR:\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^{2^{ }}y^2+3}\)

KB
17 tháng 3 2019 lúc 14:42

Ta có : \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x\left(x^3-1\right)-y\left(y^3-1\right)}{\left(x^3-1\right)\left(y^3-1\right)}\)

\(=\frac{x^4-x-y^4+y}{\left(x^3-1\right)\left(y^3-1\right)}\)

\(=\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-y^3-x^3+1}\)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2-xy+y^2\right)+1}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{x^3y^3-x^2+xy-y^2+\left(x+y\right)^2}\)

\(=\frac{\left(x-y\right)\left[x^2+y^2-\left(x+y\right)^2\right]}{x^3y^3+3xy}\)

\(=\frac{\left(x-y\right).\left(-2xy\right)}{xy\left(x^2y^2+3\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\) ( đpcm )

Bình luận (0)
NT
17 tháng 3 2019 lúc 18:15

Kết hợp với giả thiết nêu ra ở đề bài, ta có vài biến đổi sau:

\(\frac{x}{y^3-1}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}=\frac{x}{\left[y-\left(x+y\right)\right]\left(y^2+y+1\right)}=-\frac{1}{y^2+y+1}\) \(\left(1\right)\)

\(\frac{y}{x^3-1}=\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{y}{\left[x-\left(x+y\right)\right]\left(x^2+x+1\right)}=-\frac{1}{x^2+x+1}\) \(\left(2\right)\)

Mặt khác, ta lại có: \(\left(x^2+x+1\right)\left(y^2+y+1\right)=x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\)

\(=x^2y^2+\left[x^2+xy\left(x+y\right)+xy+y^2\right]+\left(x+y\right)+1=x^2y^2+\left(x+y\right)^2+2=x^2y^2+3\)

Khi đó, trừ đẳng thức \(\left(1\right)\) cho đẳng thức \(\left(2\right)\) vế theo vế, ta được:

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}=\frac{\left(y-x\right)\left(x+y+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Vậy, \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
MN
Xem chi tiết
TH
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết