Violympic toán 9

ND

cho x,y thỏa mãn \(\left\{{}\begin{matrix}x+y\le2\\x^2+y^2+xy=3\end{matrix}\right.\)

tìm GTNN,GTLN của t =x2+y2-xy

AH
28 tháng 10 2018 lúc 23:42

Lời giải:

\(\left\{\begin{matrix} x+y\leq 2\\ x^2+xy+y^2=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (x+y)^2\leq 4\\ x^2+xy+y^2=3\end{matrix}\right.\)

\(\Rightarrow (x+y)^2-(x^2+xy+y^2)\leq 1\Leftrightarrow xy\leq 1\)

Do đó:

\(t=x^2+y^2-xy=(x^2+y^2+xy)-2xy=3-2xy\geq 3-2.1=1\)

Mặt khác:

\(\frac{x^2-xy+y^2}{x^2+xy+y^2}=\frac{x^2+xy+y^2-2xy}{x^2+y^2+xy}=1-\frac{2xy}{x^2+xy+y^2}=3-(2+\frac{2xy}{x^2+xy+y^2})\)

\(=3-\frac{2(x+y)^2}{x^2+xy+y^2}=3-\frac{2(x+y)^2}{3}\leq 3\)

\(\Rightarrow t= x^2-xy+y^2\leq 3(x^2+xy+y^2)=3.3=9\)

Vậy \(t_{\min}=1\Leftrightarrow x=y=1\)

\(t_{\max}=9\Leftrightarrow (x,y)=(\sqrt{3}; -\sqrt{3})\)và hoán vị

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết
TS
Xem chi tiết
KA
Xem chi tiết
PQ
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết