Violympic toán 8

CG

Cho xy \(\ge\) 1. CMR: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

NL
22 tháng 4 2019 lúc 0:20

Biến đổi tương đương, do mọi hạng tử đều dương nên:

\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\ge2\left(x^2y^2+x^2+y^2+1\right)\)

\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy=2x^2y^2+2x^2+2y^2+2\)

\(\Leftrightarrow x^3y+xy^3-2x^2y^2-\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) luôn đúng do \(xy\ge1\Rightarrow xy-1\ge0\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
HV
Xem chi tiết
MK
Xem chi tiết
LS
Xem chi tiết
TP
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết