Cho a, b > 0. Tìm GTNN của A = \(\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}\)
Cho các số x, y > 0. Tìm GTNN của các biểu thức sau:
C = \(\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}\)Cho các số x, y > 0. Tìm GTNN của các biểu thức sau:
C = \(\frac{\left(x-y\right)^2}{xy}+\frac{4xy}{\left(x+y\right)^2}\)Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy.\)
Tìm GTNN của P = \(\frac{1}{x^2+y^2}+\frac{1}{xy}+\frac{\sqrt{xy}}{x+y}\)
CHo x,y > 0, x + y = 1. Tìm GTNN của \(S=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Đề:
Giá trị của y thoả mãn x2 + y2 + z2 = xy + 3y + 2z - 4 với x, y, z \(\in\) Z.
Giải:
x2 + y2 + z2 = xy + 3y + 2z - 4
x2 - xy + y2 - 3y + z2 - 2z + 4 = 0
\(x^2-2\times x\times\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}-3y+3+z^2-2z+1=0\)
\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y^2}{4}-2\times\frac{y}{2}\times1+1^2\right)+\left(z-1\right)^2=0\)
\(\left(x-\frac{y}{2}\right)+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)
\(\left\{\begin{matrix}x-\frac{y}{2}=0\\\frac{y}{2}-1=0\\z-1=0\end{matrix}\right.\)
\(\frac{y}{2}=1\)
\(y=2\)
ĐS: 2
~ Nana ~
Bài 1 :
a) Cho x,y > 0 thỏa mãn \(xy=6\). Tìm min của \(A=x^2+y^2\)
b) Cho x,y > 0 thỏa mãn \(x+y=5\) Tìm max của xy.
Bài 2 :
Cho a,b,c là các số dương. Tìm GTNN của :
\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho x,y > 0 và x + y ≤ 2. Tìm GTNN của các biểu thức sau:
Q = \(\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2\)
Cho x+y=1 và xy\(\ne\)0.CMR:\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^{2^{ }}y^2+3}\)