Rút gọn:
a,\(\frac{3+\sqrt{3}}{1+\sqrt{3}}\)
b,\(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-\sqrt{2}}\)
c,\(\frac{y-2\sqrt{y}}{\sqrt{y}-2}\)
d,\(\frac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
e,\(\frac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
g,\(\frac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
Tính B = \(\frac{1+xy}{x+y}-\frac{1-xy}{x-y}vớix=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}}y=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
bài 1:
a) D = \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) E = \(\sqrt[3]{\sqrt{5}-2}+\sqrt[3]{\sqrt{5}+2}\)
c) F =\(\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)
bài 2:
a) C = \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\)
b) D = \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\frac{1}{2-\sqrt{3}}\)
c) E =\(\frac{3-x^2}{x+\sqrt{3}}\) với x\(\ne-\sqrt{3}\)
d) F = \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
e) G = \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}\) (có vô hạn dấu căn)
Bài 1: CMR:
a, (4+\(\sqrt{3}\)). (4-\(\sqrt{3}\))=13
b, \(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}=2\)
c, \(\frac{\sqrt{1}}{2+\sqrt{3}}+\frac{\sqrt{1}}{2-\sqrt{3}}=4\)
d, \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=a-b\)(a>0, b>0, a≠b)
Bài 2: CMR:
a, \(\sqrt{a}+\frac{\sqrt{1}}{\sqrt{a}}\ge2\left(a>0\right)\)
b, a+b+\(\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\left(a,b>0\right)\)
c, \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xyz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\left(x,y,z>0\right)\)
d, \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=-8\sqrt{3}\)
e, \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\)=a-b(a>0, b>0, a≠b)
Bài 3: Tìm Min hoặc Max(nếu có):
a, \(\sqrt{x^2+9}\)
b, \(\frac{2}{\sqrt{x^2+1}}\)
c, 1-\(\sqrt{5+2x-x^2}\)
Tính giá trị các biểu thức sau:
a) \(A=\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
b) \(A=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c) \(A=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
c) \(A=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)
2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:
a) M-N
b) \(M^3-N^3\)
3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\))
4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)
5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)
6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)
7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)
9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)
10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
Giải phương trình:
a) \(2\sqrt{x^2-4}-3=6\sqrt{x-2}-\sqrt{x+2}\)
b) \(\frac{\sqrt{x-2016}-1}{x-2016}+\frac{\sqrt{y-2017}-1}{y-2017}+\frac{\sqrt{z-2018}-1}{z-2018}=\frac{3}{4}\)
c) \(\sqrt{3+\sqrt{3+x}}=x\)
d) \(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
e) \(\sqrt{x^2+3x+5}+\sqrt{x^2-2x+5}=5\sqrt{x}\)
f) \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
rút gon các biện thức sau \(\frac{a\sqrt{b}+b\sqrt{a}}{a-b}\),\(\frac{y\sqrt{y}+3\sqrt{3}}{y-\sqrt{3y}+3}\),\(\frac{x\sqrt{x-1}}{\sqrt{x-1}}\),\(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}}\)