\(\Rightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\xy=\frac{1}{4}\end{matrix}\right.\)
\(x^2+y^2=\left(x+y\right)^2-2xy=\frac{3}{2}\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2\sqrt{2}-\frac{3}{4}.\sqrt{2}=\frac{5\sqrt{2}}{4}\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-\left(xy\right)^2\left(x+y\right)=\frac{3}{2}.\frac{5\sqrt{2}}{4}-\frac{1}{16}.\sqrt{2}=\frac{29\sqrt{2}}{16}\)
Vậy \(S=\frac{29\sqrt{2}}{16}\)