Violympic toán 9

BV

Cho \(x^2+\left(m-1\right)\cdot x-6=0\)

a, cm pt luôn có 2 nghiệm x1,x2

b,tìm m để B \(=\left(x_1^2-9\right)\left(x^2_2-4\right)\) đạt GTLN

NL
19 tháng 5 2019 lúc 16:20

\(ac=-6< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-6\end{matrix}\right.\)

\(B=\left(x_1-3\right)\left(x_1+3\right)\left(x_2-2\right)\left(x_2+2\right)\)

\(=\left(x_1-3\right)\left(x_2-2\right)\left(x_1+3\right)\left(x_2+2\right)\)

\(=\left(x_1x_2-2x_1-3x_2+6\right)\left(x_1x_2+2x_1+3x_2+6\right)\)

\(=-\left(2x_1+3x_2\right)\left(2x_1+3x_2\right)=-\left(2x_1+3x_2\right)^2\le0\)

\(\Rightarrow B_{max}=0\) khi \(2x_1+3x_2=0\)

Kết hợp Viet ta được hệ: \(\left\{{}\begin{matrix}x_1+x_2=1-m\\2x_1+3x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=3-3m\\x_2=2m-2\end{matrix}\right.\)

\(x_1x_2=-6\Leftrightarrow\left(3-3m\right)\left(2m-2\right)=-6\)

\(\Leftrightarrow\left(m-1\right)^2=1\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Bình luận (0)