Violympic toán 8

BB

Cho x, y, z là các số dương có tổng bằng 1. Tìm GTNN của biểu thức: \(A=\dfrac{x+y}{xyz}\)

NL
27 tháng 1 2021 lúc 21:31

\(A=\dfrac{1}{z}\left(\dfrac{x+y}{xy}\right)=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(x+y+z\right)^2}=16\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
DF
Xem chi tiết
NH
Xem chi tiết