Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

OP

Cho x, y, z \(\ge\) 0 thỏa mãn x + y + z = 3. Chứng minh

\(\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+zx\)

AH
18 tháng 11 2019 lúc 23:27

Lời giải:

Áp dụng BĐT AM-GM:

$\sqrt{x}+\sqrt{x}+x^2\geq 3\sqrt[3]{x^3}=3x$

$\sqrt{y}+\sqrt{y}+y^2\geq 3y$

$\sqrt{z}+\sqrt{z}+z^2\geq 3z$

Cộng theo vế:

$2(\sqrt{x}+\sqrt{y}+\sqrt{z})+x^2+y^2+z^2\geq 3(x+y+z)=(x+y+z)^2$

$\Leftrightarrow 2(\sqrt{x}+\sqrt{y}+\sqrt{z})\geq 2(xy+yz+xz)$

$\Leftrightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}\geq xy+yz+xz$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
H24
Xem chi tiết
VJ
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết
LS
Xem chi tiết
YY
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết