Cho các số thực dương xyz thỏa mãnx+y+z=3. Chứng minh rằng: \(\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\ge\dfrac{3}{2}\)
CHO X,Y,Z LÀ 3 số dương thoả mãn\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)+\(\dfrac{1}{z}\)=2016
tìm GTLN của P=\(\dfrac{x+y}{x^2+y^2}\)+\(\dfrac{y+z}{y^2+z^2}\)+\(\dfrac{z+x}{z^2+x^2}\)
1/ Xác định các hệ số a,b,c thỏa man:
(2x - 5)(3x +b) = ax22 +x + c
2/ Tính hợp lí giá trị biểu thức:
B= 4/2015 . (3+ 2011/2013) + 1/2015 . 2/2013 - 6033/ 2013.2015
3/ Cho x2 - y= a, y2 - z= b và z2 - x= c (a,b,c là các hằng số)
Chứng minh rằng giá trị của biểu thức sau ko phụ thuộc các biến x,y,z:
M= x3 .( z- y2) + y3 .( x- z2) + z3 .(y-x2) + xyz (xyz -1)
Giúp mình với.
Cm p=x3 .(z - y2)+y3.(z - y2 )+y3.(x - z2) - z3. z3. (y- z2)+xyz(xyz -1) không phụ thuộc vào biến số biết rằng x2 - y = a ; y2 - z =b và z2 -x =c ( với a,b,c là he số)
Cmr
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
c) \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
d) \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
cho x, y, z là các số khác 0. chúng minh rằng
nếu x + y + z = \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) = 0 thì \(\dfrac{x^6+y^6+z^6}{x^3+y^3+z^3}\) = xyz
Cho \(x^2-y=a;y^2-z=b;z^2-x=c\)
CM : \(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
không phụ thuộc \(x;y;z\)
Bài 1: Tìm x, biết:
a) (10x + 9)x - (5x - 1) (2x + 3) = 8
b) (3x - 5) (7 - 5x) + (5x + 2) (3x - 2) - 2 = 0
c) x (x + 1) (x + 6) - x3 = 5x.
Bài 2: Chứng minh rằng giá trị biểu thức không phụ thuộc vào biến.
a) (x2 - 7) (x + 2) - (2x - 1) (x + 4) + x (x2 - 2x - 22) + 35
b) (x + z) (x - z) - y (2x - y) - (x - y + z) (x - y - z).
Bài 3: Tính giá trị của biểu thức
A= (3x + 5) (2x - 1) + (4x - 1) (5x + 2) tại |x| = 2
B= (x - 3) (x + 7) - (2x - 5) (x - 1) tại x = -1.