Ta có: \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(=\dfrac{x+1-1}{x+1}+\dfrac{y+1-1}{y+1}+\dfrac{z+1-1}{z+1}\)
\(=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}=\dfrac{9}{4}\)
\(\Rightarrow P\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
P/s: bài này có max ko có min vì khi cho hai trong ba số tiến gần đến không thì giá trị của biểu thức ngày càng nhỏ