Bất phương trình bậc nhất một ẩn

NY

Cho x, y > 0 và xy = 1. Tìm GTLN của \(A=\dfrac{x}{x^4+y^2}+\dfrac{y}{x^2+y^4}\)

Cho x, y > 0, thỏa mãn x + y \(\le\) 1. Tìm GTNN của \(B=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)

AH
11 tháng 4 2018 lúc 23:27

Câu 1:

Áp dụng BĐT Cô-si:

\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)

\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)

Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)

Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)

Bình luận (0)
AH
11 tháng 4 2018 lúc 23:36

Câu 2:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)

\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)

(do \(x+y\leq 1\) )

Áp dụng BĐT Cô-si:

\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)

\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)

\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)

Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)

Vậy \(B_{\min}=11\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

Bình luận (0)
HD
31 tháng 8 2018 lúc 12:54

giai bai toan hieu cua hai so tu nhien la 17 chu so hang don vi cua so bi tru 3.Neu bo chu so han vi cng doua so bi tru ta duoc so tru tim so tru va so bi tru ai biet giup minh voi

Bình luận (0)

Các câu hỏi tương tự
AT
Xem chi tiết
AT
Xem chi tiết
MM
Xem chi tiết
LC
Xem chi tiết
DN
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
KM
Xem chi tiết
TD
Xem chi tiết