Bất phương trình bậc nhất một ẩn

MM

Cho x, y > 0 và x + y = 2. Tìm: \(MinP=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)

TD
15 tháng 6 2017 lúc 16:24

Áp dụng Bất đẳng thức Cauchy :

\(\dfrac{1}{x^2+y^2}+\dfrac{x^2+y^2}{4}\ge1\)

\(\dfrac{1}{xy}+xy\ge2\)

Cộng vế theo vế, ta được:

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}+\dfrac{x^2+y^2}{4}+xy\ge3\)

\(\Leftrightarrow P+\dfrac{x^2+y^2+4xy}{4}\ge3\)

\(\Leftrightarrow P+\dfrac{\left(x+y\right)^2+2xy}{4}\ge3\)

\(\Leftrightarrow P+\dfrac{4+2xy}{4}\ge3\Leftrightarrow P\ge3-\dfrac{4-2xy}{4}\) (vì: \(x+y=2\Rightarrow\left(x+y\right)^2=4\) )

Mà: \(x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\Rightarrow4\ge4xy\Rightarrow2\ge2xy\)

\(\Rightarrow P=3-\dfrac{4+2xy}{4}\ge3-\dfrac{4-2}{4}=\dfrac{3}{2}\)

Vậy \(MinP=\dfrac{3}{2}\) khi \(x+y=1\)

Bình luận (0)
LF
15 tháng 6 2017 lúc 16:25

Áp dụng BĐT AM-GM ta có:

\(x+y=2\ge2\sqrt{xy}\Rightarrow4\ge4xy\Rightarrow xy\le1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)

\(\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{2xy}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\)

\(\ge\dfrac{4}{4}+\dfrac{1}{2}=1+\dfrac{1}{2}=\dfrac{3}{2}\left(x+y=2;xy\le1\right)\)

Đẳng thức xảy ra khi \(x=y=1\)

Bình luận (0)
TD
15 tháng 6 2017 lúc 16:32

Áp dụng Bất đẳng thức Svac:

\(P=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\)

\(\Rightarrow P\ge1+\dfrac{1}{2xy}\ge1+\dfrac{1}{2\cdot\dfrac{\left(x+y\right)^2}{2}}=1+\dfrac{1}{2}=\dfrac{3}{2}\)

Vậy MinP=3/2 khi x=y=1

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
DM
Xem chi tiết
NY
Xem chi tiết
AT
Xem chi tiết
AT
Xem chi tiết
DN
Xem chi tiết